Cell Migration : Integrating Signals from Front to Back
نویسندگان
چکیده
Bliek, J. Cell Biol. 143, 351 (1998). 21. A. M. Labrousse, M. D. Zappaterra, D. A. Rube, A. M. van der Bliek, Mol. Cell 4, 815 (1999). 22. H. Sesaki, R. E. Jensen, J. Cell Biol. 147, 699 (1999). 23. S. Arimura, N. Tsutsumi, Proc. Natl. Acad. Sci. U.S.A. 99, 5727 (2002). 24. A. M. van der Bliek, Trends Cell Biol. 9, 96 (1999). 25. J. E. Hinshaw, Annu. Rev. Cell Dev. Biol. 16, 483 (2000). 26. J. E. Hinshaw, S. L. Schmid, Nature 374, 190 (1995). 27. J. E. Hinshaw, Curr. Opin. Struct. Biol. 9, 260 (1999). 28. M. H. Stowell, B. Marks, P. Wigge, H. T. McMahon, Nature Cell Biol. 1, 27 (1999). 29. B. Marks et al., Nature 410, 231 (2001). 30. N. H. Fukushima, E. Brisch, B. R. Keegan, W. Bleazard, J. M. Shaw, Mol. Biol. Cell 12, 2756 (2001). 31. S. Sever, Curr. Opin. Cell Biol. 14, 463 (2002). 32. S. L. Newmyer, A. Christensen, S. Sever, Dev. Cell 4, 929 (2003). 33. H. Gao, D. Kadirjan-Kalbach, J. E. Froehlich, K. W. Osteryoung, Proc. Natl. Acad. Sci. U.S.A. 100, 4328 (2003). 34. S. Miyagishima, K. Nishida, T. Kuroiwa, Trends Plant Sci. 8, 432 (2003). 35. S. Miyagishima et al., Plant Cell 13, 2257 (2001). 36. S. Y. Miyagishima et al., Plant Cell 15, 655 (2003). 37. K. Nishida et al., Proc. Natl. Acad. Sci. U.S.A. 100, 2146 (2003). 38. A. Legesse-Miller, R. H. Massol, T. Kirchhausen, Mol. Biol. Cell 14, 1953 (2003). 39. M. Fujiwara, S. Yoshida, Biochem. Biophys. Res. Commun. 287, 462 (2001). 40. R. S. McAndrew, J. E. Froehlich, S. Vitha, K. D. Stokes, K. W. Osteryoung, Plant Physiol. 127, 1656 (2001). 41. S. Sever, H. Damke, S. L. Schmid, J. Cell Biol. 150, 1137 (2000). 42. J. Nunnari, unpublished data. 43. A. G. McArthur et al., FEMS Microbiol. Lett. 189, 271 (2000). 44. M. Marti et al., J. Biol. Chem. 278, 24837 (2003). 45. C. A. Vater, C. K. Raymond, K. Ekena, I. Howald-Stevenson, T. H. Stevens, J. Cell Biol. 119, 773 (1992). 46. D. Hoepfner, M. van den Berg, P. Philippsen, H. F. Tabak, E. H. Hettema, J. Cell Biol. 155, 979 (2001). 47. J. Nunnari, H. Gao, K. W. Osteryoung, unpublished data. 48. F. van den Ent, L. Amos, J. Lowe, Curr. Opin. Microbiol. 4, 634 (2001). 49. K. W. Osteryoung, K. D. Stokes, S. M. Rutherford, A. L. Percival, W. Y. Lee, Plant Cell 10, 1991 (1998). 50. R. Strepp, S. Scholz, S. Kruse, V. Speth, R. Reski, Proc. Natl. Acad. Sci. U.S.A. 95, 4368 (1998). 51. K. W. Osteryoung, R. S. McAndrew, Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 315 (2001). 52. K. D. Stokes, K. W. Osteryoung, Gene 320, 97 (2003). 53. S. Vitha, R. S. McAndrew, K. W. Osteryoung, J. Cell Biol. 153, 111 (2001). 54. S. Vitha et al., Plant Cell 15, 1918 (2003). 55. R. McAndrew, C. Chi-Ham, J. E. Froehlich, K. W. Osteryoung, unpublished data. 56. A. Gaikwad, V. Babbarwal, V. Pant, S. K. Mukherjee, Mol. Gen. Genet. 263, 213 (2000). 57. M. El-Shami, S. El-Kafafi, D. Falconet, S. Lerbs-Mache, Mol. Genet. Genomics 267, 254 (2002). 58. X. Ma, W. Margolin, J. Bacteriol. 181, 7531 (1999). 59. J. Errington, R. A. Daniel, D. J. Scheffers, Microbiol. Mol. Biol. Rev. 67, 52 (2003). 60. J. Kiessling et al., J. Cell Biol. 151, 945 (2000). 61. K. D. Stokes, R. S. McAndrew, R. Figueroa, S. Vitha, K. W. Osteryoung, Plant Physiol. 124, 1668 (2000). 62. J. L. Marrison et al., Plant J. 18, 651 (1999). 63. S. Walter, J. Buchner, Angew. Chem. Int. Ed. Engl. 41, 1098 (2002). 64. O. A. Koksharova, C. P. Wolk, J. Bacteriol. 184, 5524 (2002). 65. H. Fulgosi, L. Gerdes, S. Westphal, C. Glockmann, J. Soll, Proc. Natl. Acad. Sci. U.S.A. 99, 11501 (2002). 66. J. Maple, N. H. Chua, S. G. Moller, Plant J. 31, 269 (2002). 67. K. S. Colletti et al., Curr. Biol. 10, 507 (2000). 68. R. Itoh, M. Fujiwara, N. Nagata, S. Yoshida, Plant Physiol. 127, 1644 (2001). 69. L. Griparic, A. M. van der Bliek, Traffic 2, 235 (2001). 70. E. Smirnova, L. Griparic, D. L. Shurland, A. M. van der Bliek, Mol. Biol. Cell 12, 2245 (2001). 71. K. R. Pitts, Y. Yoon, E. W. Krueger, M. A. McNiven, Mol. Biol. Cell 10, 4403 (1999). 72. S. Jakobs et al., J. Cell Sci. 116, 2005 (2003). 73. K. L. Cerveny, J. M. McCaffery, R. E. Jensen, Mol. Biol. Cell 12, 309 (2001). 74. Q. Tieu, J. Nunnari, J. Cell Biol. 151, 353 (2000). 75. P. Fekkes, K. A. Shepard, M. P. Yaffe, J. Cell Biol. 151, 333 (2000). 76. A. D. Mozdy, J. M. McCaffery, J. M. Shaw, J. Cell Biol. 151, 367 (2000). 77. Q. Tieu, V. Okreglak, K. Naylor, J. Nunnari, J. Cell Biol. 158, 445 (2002). 78. K. L. Cerveny, R. E. Jensen,Mol. Biol. Cell 14, 4126 (2003). 79. Y. Yoon, E. W. Krueger, B. J. Oswald, M. A. McNiven, Mol. Cell. Biol. 23, 5409 (2003). 80. D. I. James, P. A. Parone, Y. Mattenberger, J.-C. Martinou, J. Biol. Chem. 278, 36373 (2003). 81. H. Berman et al., Nucleic Acids Res. 28, 235 (2000). 82. PDBID: 1IYG, W. Ohashi et al., unpublished data. 83. D. Rube, S. Gandre, A. van der Bliek, 14th International C. elegans Conference, 29 June to 3 July 2003, Los Angeles, Abstract 845B. 84. W. B. Huttner, A. Schmidt, Curr. Opin. Neurobiol. 10, 543 (2000). 85. K. Farsad et al., J. Cell Biol. 155, 193 (2001). 86. A. Schmidt et al., Nature 401, 133 (1999). 87. H. Hashimoto, Int. Rev. Cytol. 222, 63 (2003). 88. N. Garrido et al., Mol. Biol. Cell 14, 1583 (2003). 89. W. J. Jeong et al., Plant Physiol. 129, 112 (2002). 90. J. Nunnari et al., Mol. Biol. Cell 8, 1233 (1997). 91. We regret that space constraints have prevented us from citing many relevant papers. We thank S. Merchant and S. Miyagishima for critical reading of themanuscript; P. Beech and A. van der Bliek for sharing relevant findings before publication; S. Vitha, D. Yoder, S. Miyagishima, K. Naylor, A. Stone, C. Song, andH. Gao for providing images for figures; and all the members of our laboratories for invaluable contributions. Supported byNSF grants 0092448 (K.W.O.), 0313520 (K.W.O.), and 0110899 (J.N.); NIH grant R01GM62942A ( J.N.); and the Michigan State University Center for Plant Products and Technologies (K.W.O.).
منابع مشابه
Cell migration: integrating signals from front to back.
Cell migration is a highly integrated multistep process that orchestrates embryonic morphogenesis; contributes to tissue repair and regeneration; and drives disease progression in cancer, mental retardation, atherosclerosis, and arthritis. The migrating cell is highly polarized with complex regulatory pathways that spatially and temporally integrate its component processes. This review describe...
متن کاملRidley Cell Migration : Integrating Signals from Front to Back
clicking here. colleagues, clients, or customers by , you can order high-quality copies for your If you wish to distribute this article to others here. following the guidelines can be obtained by Permission to republish or repurpose articles or portions of articles ): April 11, 2013 www.sciencemag.org (this information is current as of The following resources related to this article are avail...
متن کاملInfluence of front row burden on fragmentation, Muckpile shape, Excavator cycle time, and back break in surface Limestone Mines
Front row burden is one of the key parameter to improve the bench blasting results. Improper design of the front row burden can create nuisances in the form of ground vibration, flyrock, back break or it may responsible for breakage of improper fragment size from the rockmass. Therefore, front row burden need to be optimised on the basis of proper scientific assessment. It has been proved that ...
متن کاملOptogenetic toolkit reveals the role of Ca2+ sparklets in coordinated cell migration.
Cell migration is controlled by various Ca(2+) signals. Local Ca(2+) signals, in particular, have been identified as versatile modulators of cell migration because of their spatiotemporal diversity. However, little is known about how local Ca(2+) signals coordinate between the front and rear regions in directionally migrating cells. Here, we elucidate the spatial role of local Ca(2+) signals in...
متن کاملMolecules and mechanisms that regulate multipolar migration in the intermediate zone
Most neurons migrate with an elongated, "bipolar" morphology, extending a long leading process that explores the environment. However, when immature projection neurons enter the intermediate zone (IZ) of the neocortex they become "multipolar". Multipolar cells extend and retract cytoplasmic processes in different directions and move erratically-sideways, up and down. Multipolar cells extend axo...
متن کاملReview of Differentiation and Proliferation of Primordial Germ Cells in Culture
Primordial germ cells (PGCs) are highly specialized cell population that arises from the epiblast in vivo. There are three critical steps in the life cycle of these cells: 1-Specification 2-migration and proliferation 3-prenatal and postnatal sex specific development. Specification of germ cells in epiblast occurs due to signals secreted from extraembryonic tissues. Primordial germ cells are re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003